上一节已经介绍了哈希表的基本原理并实现了一个基本的哈希表,而在实际项目中, 对哈希表的需求远不止那么简单。对性能,灵活性都有不同的要求。下面我们看看PHP中的哈希表是怎么实现的。
PHP中的哈希表是十分重要的是一个数据结构,PHP的大部分的语言特性都会依赖于哈希表, 例如:变量的作用域和变量的存储,类的实现以及Zend引擎内部的很多数据都是保存在哈希表中的。
上一节提到PHP中的哈希表是使用拉链法来解决冲突的,具体点讲就是使用链表来存储哈希到同一个槽位的数据, Zend为了保存数据之间的关系而使用了双向列表来保存数据,
PHP中的哈希表实现在Zend/zend_hash.c中,还是按照上一小节的方式,先看看PHP实现中的数据结构, PHP使用如下两个数据结构来实现哈希表,HashTable结构体用于保存整个哈希表需要的基本信息, 而Bucket结构体用于保存具体的数据内容,如下:
typedef struct _hashtable { uint nTableSize; // hash Bucket的大小,最小为8,以2x增长。 uint nTableMask; // nTableSize-1 , 索引取值的优化 uint nNumOfElements; // hash Bucket中当前存在的元素个数,count()函数会直接返回此值 ulong nNextFreeElement; // 下一个数字索引的位置 Bucket *pInternalPointer; // 当前遍历的指针(foreach比for快的原因之一) Bucket *pListHead; // 存储数组头元素指针 Bucket *pListTail; // 存储数组尾元素指针 Bucket **arBuckets; // 存储hash数组 dtor_func_t pDestructor; zend_bool persistent; unsigned char nApplyCount; // 标记当前hash Bucket被递归访问的次数(防止多次递归) zend_bool bApplyProtection;// 标记当前hash桶允许不允许多次访问,不允许时,最多只能递归3次 #if ZEND_DEBUG int inconsistent; #endif } HashTable;
nTableSize字段用于标示哈希表的容量,哈希表的初始容量最小为8。首先看看哈希表的初始化函数:
ZEND_API int _zend_hash_init(HashTable *ht, uint nSize, hash_func_t pHashFunction, dtor_func_t pDestructor, zend_bool persistent ZEND_FILE_LINE_DC) { uint i = 3; //... if (nSize >= 0x80000000) { /* prevent overflow */ ht->nTableSize = 0x80000000; } else { while ((1U << i) < nSize) { i++; } ht->nTableSize = 1 << i; } // ... ht->nTableMask = ht->nTableSize - 1; /* Uses ecalloc() so that Bucket* == NULL */ if (persistent) { tmp = (Bucket **) calloc(ht->nTableSize, sizeof(Bucket *)); if (!tmp) { return FAILURE; } ht->arBuckets = tmp; } else { tmp = (Bucket **) ecalloc_rel(ht->nTableSize, sizeof(Bucket *)); if (tmp) { ht->arBuckets = tmp; } } return SUCCESS; }
例如如果设置初始大小为10,则上面的算法将会将大小调整为16。也就是始终将大小调整为接近初始大小的 2的整数次方。
为什么会做这样的调整呢?我们先看看HashTable将哈希值映射到槽位的方法,上一小节我使用了取模的方式来将哈希值 映射到槽位,例如大小为8的哈希表,哈希值为100, 则映射的槽位索引为: 100 % 8 = 4,由于索引通常从0开始, 所以槽位的索引值为3,在PHP中使用如下的方式计算索引:
h = zend_inline_hash_func(arKey, nKeyLength); nIndex = h & ht->nTableMask;
从上面的_zend_hash_init()函数中可知,ht->nTableMask的大小为ht->nTableSize -1。 这里使用&操作而不是使用取模,这是因为是相对来说取模操作的消耗和按位与的操作大很多。
mask的作用就是将哈希值映射到槽位所能存储的索引范围内。 例如:某个key的索引值是21, 哈希表的大小为8,则mask为7,则求与时的二进制表示为: 10101 & 111 = 101 也就是十进制的5。 因为2的整数次方-1的二进制比较特殊:后面N位的值都是1,这样比较容易能将值进行映射, 如果是普通数字进行了二进制与之后会影响哈希值的结果。那么哈希函数计算的值的平均分布就可能出现影响。
设置好哈希表大小之后就需要为哈希表申请存储数据的空间了,如上面初始化的代码, 根据是否需要持久保存而条用了不同的内存申请方法,是需要需要持久体现的是在前面PHP生命周期里介绍的: 持久内容能在多个请求之间可访问,而如果是非持久存储则会在请求结束时释放占用的空间。 具体内容将在内存管理章节中进行介绍。
HashTable中的nNumOfElements字段很好理解,每插入一个元素或者unset删掉元素时会更新这个字段。 这样在进行count()函数统计数组元素个数时就能快速的返回。
nNextFreeElement字段非常有用。先看一段PHP代码:
<?php $a = array(10 => 'Hello'); $a[] = 'TIPI'; var_dump($a); // ouput array(2) { [10]=> string(5) "Hello" [11]=> string(5) "TIPI" }
PHP中可以不指定索引值向数组中添加元素,这时将默认使用数字作为索引, 和C语言中的枚举类似, 而这个元素的索引到底是多少就由nNextFreeElement字段决定了。 如果数组中存在了数字key,则会默认使用最新使用的key + 1,例如上例中已经存在了10作为key的元素, 这样新插入的默认索引就为11了。
下面看看保存哈希表数据的槽位数据结构体:
typedef struct bucket { ulong h; // 对char *key进行hash后的值,或者是用户指定的数字索引值 uint nKeyLength; // hash关键字的长度,如果数组索引为数字,此值为0 void *pData; // 指向value,一般是用户数据的副本,如果是指针数据,则指向pDataPtr void *pDataPtr; //如果是指针数据,此值会指向真正的value,同时上面pData会指向此值 struct bucket *pListNext; // 整个hash表的下一元素 struct bucket *pListLast; // 整个哈希表该元素的上一个元素 struct bucket *pNext; // 存放在同一个hash Bucket内的下一个元素 struct bucket *pLast; // 同一个哈希bucket的上一个元素 // 保存当前值所对于的key字符串,这个字段只能定义在最后,实现变长结构体 char arKey[1]; } Bucket;
如上面各字段的注释。h字段保存哈希表key哈希后的值。在PHP中可以使用字符串或者数字作为数组的索引。 数字索引直接就可以作为哈希表的索引,数字也无需进行哈希处理。h字段后面的nKeyLength字段是作为key长度的标示, 如果索引是数字的话,则nKeyLength为0。在PHP数组中如果索引字符串可以被转换成数字也会被转换成数字索引。 所以在PHP中例如'10','11'这类的字符索引和数字索引10, 11没有区别。
上面结构体的最后一个字段用来保存key的字符串,而这个字段却申明为只有一个字符的数组, 其实这里是一种长见的变长结构体,主要的目的是增加灵活性。 以下为哈希表插入新元素时申请空间的代码
p = (Bucket *) pemalloc(sizeof(Bucket) - 1 + nKeyLength, ht->persistent); if (!p) { return FAILURE; } memcpy(p->arKey, arKey, nKeyLength);
如代码,申请的空间大小加上了字符串key的长度,然后把key拷贝到新申请的空间里。 在后面比如需要进行hash查找的时候就需要对比key这样就可以通过对比p->arKey和查找的key是否一样来进行数据的 查找。申请空间的大小-1是因为结构体内本身的那个字节还是可以使用的。
在PHP5.4中将这个字段定义成const char* arKey类型了。
上图来源于网络。
PHP中数组的操作函数非常多,例如:array_shift()和array_pop()函数,分别从数组的头部和尾部弹出元素。 哈希表中保存了头部和尾部指针,这样在执行这些操作时就能在常数时间内找到目标。 PHP中还有一些使用的相对不那么多的数组操作函数:next(),prev()等的循环中, 哈希表的另外一个指针就能发挥作用了:pInternalPointer,这个用于保存当前哈希表内部的指针。 这在循环时就非常有用。
如图中左下角的假设,假设依次插入了Bucket1,Bucket2,Bucket3三个元素:
简单来说就是哈希表的Bucket结构维护了哈希表中插入元素的先后顺序,哈希表结构维护了整个哈希表的头和尾。 在操作哈希表的过程中始终保持预算之间的关系。
和上一节类似,将简单介绍PHP哈希表的操作接口实现。提供了如下几类操作接口:
本小节选取其中的插入操作进行介绍。